
Conversational Programming for Collaborative
Robots

Maike Paetzel-Prüsmann
Department of Linguistics

University of Potsdam
Potsdam, Germany

paetzel-pruesmann@uni-potsdam.de

Julie Hunter
LINAGORA Labs
Toulouse, France

jhunter@linagora.com

Kranti Chalamalasetti
Department of Linguistics

University of Potsdam
Potsdam, Germany

kranti.chalamalasetti@uni-potsdam.de

Kate Thompson
LINAGORA Labs
Toulouse, France

cthompson@linagora.com

Alexandros Nicolaou
Department of Linguistics

University of Potsdam
Potsdam, Germany

alexandros.nicolaou@uni-potsdam.de

Ozan Güngör
Synergeticon

Hamburg, Germany
o.guengoer@synergeticon.de

David Schlangen
Department of Linguistics

University of Potsdam
Potsdam, Germany

david.schlangen@uni-potsdam.de

Nicholas Asher
Institut de Recherche en Informatique de Toulouse

Centre National de Recherche Scientifique
Toulouse, France

nicholas.asher@irit.fr

Abstract—In this position paper, we describe a novel
approach of programming industrial robots via con-
versational dialogue. We believe that conversational
programming, unlike other interfaces for humans to
reprogram industrial robots, will enable novices to
teach a robot complex new procedures without any
knowledge of programming required. Using a sample
conversation between a human User and an industrial
robotic arm, we discuss how our approach differs from
other (spoken) human-robot interfaces and why it has
the potential to solve difficulties of such interfaces when
it comes to learning to abstract from specific examples.
We also describe the unique challenges conversational
programming involves and how, once these are solved,
it could be integrated into industrial settings of the
future.

Index Terms—Cognitive Human-Robot Interac-
tion, Industrial Robots, Robust/Adaptive Control of
Robotic Systems

I. Introduction
In the Industry 4.0 vision, collaborative robots (cobots)

will assist workers in factories of the future, operating
on assembly lines or assisting with maintenance, fetching
tools for workers or helping them by sorting or preparing
tools and assembly parts [1], [2].

Today’s cobots are not yet flexible enough to implement
the Industry 4.0 vision and rely on extensive manual
programming for complex tasks, which is very time con-
suming and generally requires robotics experts [3]. These

This work is supported by the German Bundesministerium für
Bildung und Forschung (BMBF) and the French Ministère de l’En-
seignement supérieur, de la Recherche et de l’Innovationn (MESRI).

experts, however, have often limited knowledge of the
domain in which the robot is situated, which prolongs the
programming process and leaves it highly prone to errors.
Especially in small lot production, robotic systems need to
be reprogrammed on a regular basis as the type of work
they are required to do frequently changes. We believe the
difficult and time-consuming process of teaching the robot
new skills is one of the major bottlenecks that limits the
usage of robots in small lot production environments.

Recently, more industrial robotics systems have incor-
porated specific human-robot interaction interfaces, that
in theory allow novices to demonstrate a task to the robot
by guiding its joints (e.g., [4]–[6]; see [7] for a recent
survey). The robot then learns from the human guidance
and after seeing several examples it is able to abstract the
knowledge to changing environments. However, as soon
as the constraints become more complex, these systems,
again, reach their limits [7].

To address these issues, we aim to develop a spoken
dialogue interface for industrial human-robot collabora-
tion that can be used by a typical human user with-
out sophisticated programming skills or access to special
training data [8]. This interface will allow a robot to
take in instructions and descriptions expressed through
conversation and convert them into code. In particular,
given that our motivation is to teach robots new skills,
our goal is to provide them with a means to exploit
conversation to construct general, repeatable programs.

This objective introduces challenges on two levels. First,
a program must be specified in such a way as to prompt



the robot to execute the program in any situation that pro-
vides the requisite equipment and assembly parts within
the robot’s reach. That is, the robot must be able to
exploit multimodal (visual and linguistic) representations
at the type level to recognize particular and appropri-
ate instances of those types at execution time. Second,
effective programming through conversation will require
much more than simply being able to translate natural
language instructions directly into an executable program.
Crucially, it will require the robot to be able to produce
and exploit conversational moves as tools that allow it
to collaborate with a human on the task of constructing
the program itself [9]. As an illustration, consider the
following dialogue.

human: Begin by picking up one flat head screw.
Next, place the screw in a washer.

robot: Any kind of washer?
human: No, actually you should only use square
washers for this task.

While we might expect translations of the two first lines
of instruction expressed in the sample dialogue to figure
in the final code for the program that the human and
robot are building, the following question-answer exchange
is not meant to add new steps to the program under
construction. It rather brings to light, and then settles, an
ambiguity in the program up to that point – an objective
that it achieves very efficiently. It is such a general
capacity to engage in interactive conversation, as humans
do, that we believe will allow a robot to quickly get the
point of an instruction without being shown hundreds or
thousands of examples.

In this position paper, we introduce our efforts to
bring together research on discourse structure, conver-
sational grounding [9], multimodal grounding [10], [11]
and robotics [12] to develop a conversational program-
ming toolkit that would allow a robot to learn complex
programs from simpler ones through multimodal conver-
sation. While we use both statistical and symbolic data
representations of natural language found in many robotics
applications, our approach extends the current body of
work by using discourse information to construct an inter-
mediate representation of human instructions which then
informs robot code creation. We elaborate on this aspect
further in Section III after we describe our robotics use
case in Section II. The paper concludes in Section IV by
discussing the potential of our work for industrial settings
of the future.

II. The Domain: Pre-Assembly of a Pegboard
We designed a sample domain that is representative

of real scenarios from the industry while allowing for
adapting to different levels of difficulty depending on the
number and diversity of assembly parts as well as the
complexity of the combined procedures to be learned.

The aim for the robot, in our case a Universal Robotics1

1https://www.universal-robots.com/

Figure 1. The sample industrial use-case shown in the Webots
simualated environment. On the right side of the table is the source
board with the randomly placed pieces. To the left is the currently
empty target board the robot needs to fill.

robot arm with six degrees of freedom, is to assemble a
pegboard using individual parts that are randomly dis-
tributed on a source board. The parts consist of different
types of 3D-printable screws, washers, nuts and plates that
differ both in their type and color to add more variety and
complexity for the program to be learned.

The generic program of the robot allows it to find and
pick up the individual parts from the source board, and
place them on the target board at a desired pose. What
it needs to learn is how exactly the target board needs to
be assembled, which requires it to learn how to combine
parts into complex structures and repeat this procedure
until certain conditions are met. A setup of our use-case
in the Webots2 simulator is shown in Figure 1. We aim
for our use case to not only work in simulation, but to
translate to the real world, requiring as little adaptation
as possible. Consequently, the generic program the robot
generates needs to be agnostic to the type of environment
it was learned in. A secondary program responsible for the
grounding to the real environment then ensures that the
learned processes can be executed in various environments.

III. Our Vision for Conversational
Programming

Let’s say that a human wants the robot to fill the target
pegboard with bridges, which are made of nuts, screws and
a plate. A dialogue to get the robot to assemble the board
could look as follows:

user: Can you build a bridge?
robot: I don’t know how to build a bridge.
user: Okay, to build a bridge, we need two
washers in two holes that are next to each other.

robot: Can I use any washer?
user: Yes. Once you place the washers, you need
to add a plate on top of the two washers so it
connects the two. Can you show me?

robot: [executes the first steps]

2https://cyberbotics.com/



Figure 2. A schematic overview of the proposed system. The
conversational dialogue leads to the construction of the general
program, which can then be executed by a secondary program in
varying environments.

user: Actually, you can only use red plates for
this task. Please fix what you’ve done.

robot: OK.
robot: [Exchanges blue with red plate]
user: Excellent. Now we need to add a cross slot
screw in each of the holes of the plate. Can you
finish the assembly?

robot: Does the color of the screw matter?
user: Yes! Please only use blue screws.
robot: [Adds two blue screws]
user: Great, this is how you build a bridge. Now
can you please do that until there are no red
plates available anymore?

Moving from the conversation above to an ability to
execute the task of building a bridge raises challenges
related both to moving from conversation to a general
program and to executing that program, as mentioned in
the introduction and visualized in Figure 2. A program
is an abstract object that can be executed or instantiated
on multiple occasions and in multiple environments, and
program execution requires a particular set of skills. When
executing the program the robot must ensure that the
requisite objects are actually available in the scene it is
operating in; the execution fails if this is not the case.
To do this, the robot will need to exploit multimodal
(vision and linguistic) representations at the type level
to recognize tokens of the corresponding concepts that
are appropriate for the task. We believe this will require
building a flexible coupling between visual and linguistic
representations both at the type level and token level.

The execution of the program need not, of course,
always require a grounding of a definite description to
a particular object. In the dialogue above, the robot
may potentially pick up any object of the type that is
required and position it on the pegboard according to
the instructions. To resolve the pick_and_place calls, a
separate program with access to the visual scene queries
the position of the next potential object with the required
properties and sends this as well as the position of the

next free space on the board to the robot arm. Separating
these two parts of the program allows the programming
to work independently of the visual scene as much as
possible. More generally, the distinction between pro-
grams and executions, and between type grounding and
token grounding, reveals an important distinction between
instructing a robot with natural language commands on
a particular occasion of use to some sequence of actions
(as frequently used in the related work on human-robot
collaborative task-solving and natural language program-
ming), and programming by conversation, in which the
robot learns a program that it can then execute in multiple
environments.

Language is a helpful tool for drawing attention to
important properties and specifying conditions: when the
User says “Now we need to add a cross-slot screw”, they
make it clear in one shot that the type of screw matters.
If they were to only use images or, say, demonstrations
without language, it would likely require considerably
more examples before the robot (justifiably) felt confident
that the type of screw matters. Nevertheless, language
use is often vague and underspecified and human teachers
can forget to include important details. In this case
conversation becomes key—a tool that allows two (or
more) agents to collaboratively spell out and even correct
a program under construction.

Let us see how this plays out in our sample dialogue,
which illustrates multiple examples of underspecified in-
structions involving the type of washers needed as well
as the color of the plates and screws. In some cases, the
robot explicitly asks for clarification (e.g., “Can I use any
washer?’’) and the User answers by either specifying the
missing property or making it explicit that no further
specification is needed. The robot’s questions in these
exchanges are motivated by knowledge that multiple types
of washers may be available and by reasoning about these
possibilities. Another strategy adopted by the robot is to
simply try something and see if it works, as it does with
the plate. In this case, it is upon seeing the result that
the human realizes they have left out an important detail.
This exchange requires an interaction between visual and
linguistic information as well as a strategy how to balance
potential errors in the task execution and unnecessarily
extending the teaching dialogue.

A second type of ambiguity illustrated by the dialogue
concerns interpreting an underspecified command like fix
what you have done. By itself this command doesn’t
make clear what the robot needs to do. To resolve that
ambiguity, the robot needs to understand that it has made
a particular error (using a plate of the wrong color), which
requires it to understand the corrective move made by the
User and its relation to what the robot has done so far.

These examples make clear that using conversation to
collaboratively construct a program requires being able to
infer how conversational moves are linked to each other,
or even to nonlinguistic actions such as placing a plate on



top of two washers. When the robot asks “Can I use any
washer?’’ the human must understand that it is asking
specifically about whether it can use any washer when it
carries out the command of placing a washer in each of two
consecutive holes. When the User replies affirmatively, the
robot needs to relate the answer to the preceding question.
But what’s more, the robot needs to know what it should
do as a response to a particular type of conversational
move. It needs to know that an answer, for example,
means that it should disregard certain alternatives that
it previously thought possible when it asked its question;
an acknowledgment like “Excellent’’ means that the robot
has done well and can move on in its program construction;
a corrective move tells it to delete certain content from its
program and replace it with other content, and so on.

To build a program from the conversation, the robot
requires an understanding of the structure of the con-
versation as well as its content. Conversational moves
are anaphorically related to other conversational moves in
semantically significant ways and these different relations
affect how a conversational move will influence the content
of the final program including whether or not it shows
up at all [13]. A correction move, for instance, will both
remove and add content to some part of the final program,
but crucially, the program will not have a representation
of the corrective move itself.

Turning back to the sample dialogue, we see that
many of the elaborations and sequential moves should
be reflected in the final program. In fact, if we focus
only on these moves, we see that they form a coherent
substructure on their own and in particular, we start to
get something that looks much more like the final desired
abstract program as detailed in Algorithm 1.

Algorithm 1 Assemble Bridge
0: w1, w2 ← object(type : washer)
0: s1, s2 ← object(type : screw, color : blue)
0: p← object(type : plate, size : 2, color : red)
0: required_objects← [w1, w2, s1, s2, p]
0: if scene has required_objects then
0: (x, y)← find_space_on_board(2)
0: board.pick_and_place((x, y), w1)
0: board.pick_and_place((x, y + 1), w2)
0: board.pick_and_place((x, y), (x, y + 1), p)
0: board.pick_and_place((x, y), s1)
0: board.pick_and_place((x, y + 1), s2)
0: else
0: program_state← fail

This algorithm consequently needs to be interpreted by
a different program that grounds the abstract program
given the available types of assembly parts as well as
the specific robot and its distinct abilities to execute
certain moves.The algorithm responsible for grounding the
program also needs to be able to handle underspecified

abstract commands like pick_and_place of w1 and w2,
which can be any type of washer on the board.

It is important to note that the attempt to ground a
program in a given setting could lead to errors. For exam-
ple, it could be possible that the robot finds itself in an
environment certain parts are unavailable. It is important
that the robot is then able to communicate the problem
and differentiate between responses that require a change
in its abstract program and the current environment. The
robot could, for example, say: “I don’t find any blue screws
on the board, but I was told to use blue screws. What
do you want me to do?” The human could then either
correct a misunderstanding in the abstract program (i.e.,
the screws can be of any color), or make the missing type
of screws available to the robot.

IV. Discussion and Future Work
In this position paper, we described our vision to de-

sign a novel way of programming industrial robots using
spoken conversations. We presented the use-case of pre-
assembling a pegboard and how a human User could teach
a robot a new routine in the given scenario. The aim is
to scale the scenario to become increasingly complex and
to show that we can adapt the grounding of the program
to different environments. With our German industrial
partner Synergeticon3 we plan to develop a proof-of-
concept in a realistic industrial setting and consequently
highlight the potential of our project for the Industry 4.0
vision. We will evaluate our conversational programming
technique against standard kinesthetic and visual teaching
interfaces common in the industry. We expect our system
to not only decrease the time it takes to program the robot
to learn a new task and lead to less errors in the execution
of new programs, we believe that this will also decrease the
cognitive load of the human User as well as increase their
perception of the robot and comfort in the task.

We foresee that our project will also bring to light future
challenges for roboticists and speech processing researchers
to tackle. For example, learning how to pick up objects
of unknown size, shape and material is still challenging
for robots. In our work, we hence rely on assembly parts
that are known to the robot. However, we are confident
that our work can be extended to unknown objects once
grasping algorithms become more reliable. Similarly, au-
tomatic Speech Recognition (ASR) in an industrial setting
may produce very unreliable results given the noise level
common in such environment. While more robust ASR
systems are an active area of research, we believe that us-
ing simulated environments could present an intermediate
solution to the problem: Instead of performing the entire
teaching dialogue in the factory, the robot could be pre-
programmed in simulation and the program then merely
executed in the physical environment. With our work,
we aim to enable such sim2real transfer of conversational
programming.

3https://synergeticon.de/en/



References
[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann,

“Industry 4.0,” Business & information systems engineering,
vol. 6, no. 4, pp. 239–242, 2014.

[2] T. L. Olsen and B. Tomlin, “Industry 4.0: Opportunities and
challenges for operations management,” Manufacturing & Ser-
vice Operations Management, vol. 22, no. 1, pp. 113–122, 2020.

[3] E. Matheson, R. Minto, E. G. Zampieri, M. Faccio, and
G. Rosati, “Human–robot collaboration in manufacturing ap-
plications: a review,” Robotics, vol. 8, no. 4, p. 100, 2019.

[4] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert,
and A. Knoll, “Intuitive instruction of industrial robots: Se-
mantic process descriptions for small lot production,” in 2016
ieee/rsj international conference on intelligent robots and sys-
tems (iros). IEEE, 2016, pp. 2293–2300.

[5] C. Schou, J. S. Damgaard, S. Bøgh, and O. Madsen, “Human-
robot interface for instructing industrial tasks using kinesthetic
teaching,” in IEEE ISR 2013. IEEE, 2013, pp. 1–6.

[6] M. Tykal, A. Montebelli, and V. Kyrki, “Incrementally assisted
kinesthetic teaching for programming by demonstration,” in
2016 11th ACM/IEEE International Conference on Human-
Robot Interaction (HRI). IEEE, 2016, pp. 205–212.

[7] J. Berg and S. Lu, “Review of interfaces for industrial human-
robot interaction,” Current Robotics Reports, vol. 1, no. 2, pp.
27–34, 2020.

[8] N. Mavridis, “A review of verbal and non-verbal human–robot
interactive communication,” Robotics and Autonomous Sys-
tems, vol. 63, pp. 22–35, 2015.

[9] M. Appelgren and A. Lascarides, “Interactive task learning via
embodied corrective feedback,” Autonomous Agents and Multi-
Agent Systems, vol. 34, no. 2, pp. 1–45, 2020.

[10] C. Silberer and M. Lapata, “Learning grounded meaning repre-
sentations with autoencoders,” in Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2014, pp. 721–732.

[11] H. Tan and M. Bansal, “Vokenization: Improving language un-
derstanding with contextualized, visual-grounded supervision,”
in Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2020, pp. 2066–2080.

[12] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek,
“Robots that use language,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 3, no. 1, pp. 25–55,
2020.

[13] N. Asher and A. Lascarides, Logics of Conversation. Cambridge
University Press, 2003.


